Bienvenue sur PostGIS.fr

Bienvenue sur PostGIS.fr , le site de la communauté des utilisateurs francophones de PostGIS.

PostGIS ajoute le support d'objets géographique à la base de données PostgreSQL. En effet, PostGIS "spatialise" le serverur PostgreSQL, ce qui permet de l'utiliser comme une base de données SIG.

Maintenu à jour, en fonction de nos disponibilités et des diverses sorties des outils que nous testons, nous vous proposons l'ensemble de nos travaux publiés en langue française.

source: trunk/workshop-foss4g/introduction.rst @ 1

Revision 1, 17.7 KB checked in by djay, 13 years ago (diff)

Initial import of the svn tree

RevLine 
[1]1.. _introduction:
2
3Partie 1 : Introduction
4************************
5
6Qu'est-ce qu'une base de données spatiales ?
7============================================
8
9PostGIS est une base de données spatiales. Oracle Spatial et SQL Server 2008 sont aussi des bases de données spatiales. Mais qu'est-ce que cela signifie, qu'est-ce qui différentie un serveur de base de données spatiales d'un non spatiale ?
10
11La réponse courte, est ...
12
13**Les base de données spatiales permettent les stocage et la manipulation des objets spatiaux comme les autres objets de la base de données.**
14
15Ce qui suit présente briÚvement l'évolution des base de données spatiales, puis les liens
16entre les données spatiales et la base de données (types de données, indexes et fonctions).
17
18#. **Types de données spatiales** fait référence aux géométries de type point, ligne et polygone;
19#. L'**indexation spatiale** est utilisée pour améliorer les performance d'exécution des opérations spatiales;
20#. Les **fonctions spatiales**, au sens :term:`SQL`, sont utilsées pour accéder à des propriétées ou des relations spatiales.
21
22Conbiné, les types de données spatiales, les indexes et les fonctions fournissent une structure flexible pour optimiser les performance et les analyses.
23
24Au commencement
25----------------
26
27Dans les premiÚres implémentations :term:`SIG` historiques, toutes les données
28spatiales étaient stoquées sous la forme de fichiers plats et certaines applications
29 :term:`SIG` spécifiques étaient nécessaires pour interpréter et manipuler les données.
30Ces outils de gestion de premiÚre génération, avaient été conçu pour répondre aux
31besoins des utilisateurs pour lesquels toute les données étaient localisé au sein de leur
32agence. C'est outils étaient propriétaire, des systÚme specifiquement créé pour gérer les
33données spatiales.
34
35La seconde génération des systÚmes de gestion de données spatiales stoque certaines données dans une base de données relationelle
36
37Second-generation spatial systems store some data in relational databases (usually the "attribute" or non-spatial parts) but still lack the flexibility afforded with direct integration. 
38
39**Effectivement, les bases de données spatiales sont nés lorsque les gens ont commencé à considérer les objet spatiaux comme des objets de base de données.** 
40
41Spatial databases fully integrate spatial data with an object relational database.  The orientation changes from GIS-centric to database-centric.     
42
43.. image:: ./introduction/beginning.png
44
45.. note:: A spatial database management system may be used in applications besides the geographic world.  Spatial databases are used to manage data related to the anatomy of the human body, large-scale integrated circuits, molecular structures, and electro-magnetic fields, among others.
46
47
48Spatial Data Types
49------------------
50
51An ordinary database has strings, numbers, and dates. A spatial database adds additional (spatial) types for representing **geographic features**. These spatial data types abstract and encapsulate spatial structures such as boundary and dimension. In many respects, spatial data types can be understood simply as shapes. 
52
53.. image:: ./introduction/hierarchy.png
54   :align: center
55
56Spatial data types are organized in a type hierarchy.  Each sub-type inherits the structure (attributes) and the behavior (methods or functions) of its super-type.
57
58
59Spatial Indexes and Bounding Boxes
60----------------------------------
61
62An ordinary database provides "access methods" -- commonly known as **indexes** -- to allow for fast and random access to subsets of data.  Indexing for standard types (numbers, strings, dates) is usually done with `B-tree <http://en.wikipedia.org/wiki/B-tree>`_ indexes.  A B-tree partitions the data using the natural sort order to put the data into a hierarchical tree.
63
64The natural sort order of numbers, strings, and dates is simple to determine -- every value is less than, greater than or equal to every other value. But because polygons can overlap, can be contained in one another, and are arrayed in a two-dimensional (or more) space, a B-tree cannot be used to efficiently index them. Real spatial databases provide a "spatial index" that instead answers the question "which objects are within this particular bounding box?". 
65
66A **bounding box** is the smallest size rectangle capable of containing a given feature.
67
68.. image:: ./introduction/boundingbox.png
69   :align: center
70
71Bounding boxes are used because answering the question "is A inside B?" is very computationally intensive for polygons but very fast in the case of rectangles.  Even the most complex polygons and linestrings can be represented by a simple bounding box.
72
73Indexes have to perform quickly in order to be useful. So instead of providing exact results, as B-trees do, spatial indexes provide approximate results. The question "what lines are inside this polygon?" will be instead interpreted by a spatial index as "what lines have bounding boxes that are contained inside this polygon's bounding box?"
74
75The actual spatial indexes implemented by various databases vary widely. The most common implementation is the `R-tree <http://en.wikipedia.org/wiki/R-tree>`_ (used in PostGIS), but there are also implementations of `Quadtrees <http://en.wikipedia.org/wiki/Quadtree>`_, and `grid-based indexes <http://en.wikipedia.org/wiki/Grid_(spatial_index)>`_ in shipping spatial databases.
76
77Spatial Functions
78-----------------
79
80For manipulating data during a query, an ordinary database provides **functions** such as concatenating strings, performing hash operations on strings, doing mathematics on numbers, and extracting information from dates.  A spatial database provides a complete set of functions for analyzing geometric components, determining spatial relationships, and manipulating geometries.  These spatial functions serve as the building block for any spatial project.
81
82The majority of all spatial functions can be grouped into one of the following five categories:
83
84#. **Conversion**: Functions that *convert* between geometries and external data formats.
85#. **Management**: Functions that *manage* information about spatial tables and PostGIS administration.
86#. **Retrieval**: Functions that *retrieve* properties and measurements of a Geometry.
87#. **Comparison**: Functions that *compare* two geometries with respect to their spatial relation.
88#. **Generation**: Functions that *generate* new geometries from others.
89
90The list of possible functions is very large, but a common set of functions is defined by the :term:`OGC` :term:`SFSQL` and implemented (along with additional useful functions) by PostGIS.
91
92What is PostGIS?
93================
94
95PostGIS turns the `PostgreSQL <http://www.postgresql.org/>`_ Database Management System into a spatial database by adding adding support for the three features: spatial types, indexes, and functions.  Because it is built on PostgreSQL, PostGIS automatically inherits important "enterprise" features as well as open standards for implementation
96
97But what is PostgreSQL?
98-----------------------
99
100PostgreSQL is a powerful, object-relational database management system (ORDBMS). It is released under a BSD-style license and is thus free and open source software. As with many other open source programs, PostgreSQL is not controlled by any single company, but has a global community of developers and companies to develop it.
101
102PostgreSQL was designed from the very start with type extension in mind -- the ability to add new data types, functions and access methods at run-time. Because of this, the PostGIS extension can be developed by a separate development team, yet still integrate very tightly into the core PostgreSQL database.
103
104Why choose PostgreSQL?
105~~~~~~~~~~~~~~~~~~~~~~
106
107A common question from people familiar with open source databases is, "Why wasn't PostGIS built on MySQL?".
108
109PostgreSQL has:
110
111  * Proven reliability and transactional integrity by default (ACID)
112  * Careful support for SQL standards (full SQL92)
113  * Pluggable type extension and function extension
114  * Community-oriented development model
115  * No limit on column sizes ("TOAST"able tuples) to support big GIS objects
116  * Generic index structure (GiST) to allow R-Tree index
117  * Easy to add custom functions
118
119Combined, PostgreSQL provides a very easy development path to add new spatial types. In the proprietary world, only Illustra (now Informix Universal Server) allows such easy extension. This is no coincidence; Illustra is a proprietary re-working of the original PostgreSQL code base from the 1980's.
120
121Because the development path for adding types to PostgreSQL was so straightforward, it made sense to start there. When MySQL released basic spatial types in version 4.1, the PostGIS team took a look at their code, and the exercise reinforced the original decision to use PostgreSQL. Because MySQL spatial objects had to be hacked on top of the string type as a special case, the MySQL code was spread over the entire code base. Development of PostGIS 0.1 took under a month. Doing a "MyGIS" 0.1 would have taken a lot longer, and as such, might never have seen the light of day.
122
123Why not Shapefiles?
124-------------------
125
126The `shapefile <http://en.wikipedia.org/wiki/Shapefile>`_ (and other file formats) have been the standard way of storing and interacting with spatial data since GIS software was first written. However, these "flat" files have the following disadvantages:
127
128* **Files require special software to read and write.**  SQL is an abstraction for random data access and analysis. Without that abstraction, you will need to write all the access and analysis code yourself.
129* **Concurrent users can cause corruption.** While it's possible to write extra code to ensure that multiple writes to the same file do not corrupt the data, by the time you have solved the problem and also solved the associated performance problem, you will have written the better part of a database system. Why not just use a standard database?
130* **Complicated questions require complicated software to answer.** Complicated and interesting questions (spatial joins, aggregations, etc) that are expressible in one line of SQL in the database take hundreds of lines of specialized code to answer when programming against files.
131
132Most users of PostGIS are setting up systems where multiple applications will be expected to access the data, so having a standard SQL access method simplifies deployment and development. Some users are working with large data sets; with files, they might be segmented into multiple files, but in a database they can be stored as a single large table.
133
134In summation, the combination of support for multiple users, complex ad hoc queries, and performance on large data sets are what sets spatial databases apart from file-based systems.
135
136A brief history of PostGIS
137--------------------------
138
139In the May of 2001, `Refractions Research <http://www.refractions.net/>`_  released the first version of PostGIS. PostGIS 0.1 had objects, indexes and a handful of functions. The result was a database suitable for storage and retrieval, but not analysis.
140
141As the number of functions increased, the need for an organizing principle became clear.  The "Simple Features for SQL" (:term:`SFSQL`) specification from the Open Geospatial Consortium provided such structure with guidelines for function naming and requirements.
142
143With PostGIS support for simple analysis and spatial joins, `Mapserver <http://mapserver.org/>`_ became the first external application to provide visualization of data in the database.
144
145Over the next several years the number of PostGIS functions grew, but its power remained limited. Many of the most interesting functions (e.g., ST_Intersects(), ST_Buffer(), ST_Union()) were very difficult to code.  Writing them from scratch promised years of work.
146
147Fortunately a second project, the "Geometry Engine, Open Source" or `GEOS <http://trac.osgeo.org/geos>`_, came along. The GEOS library provides the necessary algorithms for implementing the :term:`SFSQL` specification. By linking in GEOS, PostGIS provided complete support for :term:`SFSQL` by version 0.8.
148
149As PostGIS data capacity grew, another issue surfaced: the representation used to store geometry proved relatively inefficient. For small objects like points and short lines, the metadata in the representation had as much as a 300% overhead. For performance reasons, it was necessary to put the representation on a diet.  By shrinking the metadata header and required dimensions, overhead greatly reduced. In PostGIS 1.0, this new, faster, lightweight representation became the default.
150
151Recent updates of PostGIS have worked on expanding standards compliance, adding support for curve-based geometries and function signatures specified in the ISO :term:`SQL/MM` standard. Through a continued focus on performance,  PostGIS 1.4 significantly improved the speed of geometry testing routines.
152
153Who uses PostGIS?
154-----------------
155
156For a complete list of case studies, see the `PostGIS case studies <http://www.postgis.org/documentation/casestudies/>`_ page.
157
158Institut Geographique National, France
159~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160
161IGN is the national mapping agency of France, and uses PostGIS to store the high resolution topographic map of the country, "BDUni". BDUni has more than 100 million features, and is maintained by a staff of over 100 field staff who verify observations and add new mapping to the database daily. The IGN installation uses the database transactional system to ensure consistency during update processes, and a `warm standby system <http://developer.postgresql.org/pgdocs/postgres/warm-standby.html>`_ to maintain uptime in the event of a system failure.
162
163GlobeXplorer
164~~~~~~~~~~~~
165
166GlobeXplorer is a web-based service providing online access to petabytes of global satellite and aerial imagery. GlobeXplorer uses PostGIS to manage the metadata associated with the imagery catalogue, so queries for imagery first search the PostGIS catalogue to find the location of the relevant images, then pull the images from storage and return them to the client. In building their system, GlobeXplorer tried other spatial databases but eventually settled on PostGIS because of the great combination of price and performance it offers.
167
168What applications support PostGIS?
169----------------------------------
170
171PostGIS has become a widely used spatial database, and the number of third-party programs that support storing and retrieving data using it has increased as well. The `programs that support PostGIS <http://trac.osgeo.org/postgis/wiki/UsersWikiToolsSupportPostgis>`_ include both open source and proprietary software on both server and desktop systems.
172
173The following table shows a list of some of the software that leverages PostGIS:
174
175+-------------------------------------------------+----------------------------------------------+
176| Open/Free                                       | Closed/Proprietary                           |
177+=================================================+==============================================+
178|                                                 |                                              |   
179| * Loading/Extracting                            | * Loading/Extracting                         |   
180|                                                 |                                              |     
181|   * Shp2Pgsql                                   |   * Safe FME Desktop Translator/Converter    |     
182|   * ogr2ogr                                     |                                              |       
183|   * Dxf2PostGIS                                 |                                              |         
184|                                                 | * Web-Based                                  |         
185| * Web-Based                                     |                                              |             
186|                                                 |   * Ionic Red Spider (now ERDAS)             |             
187|   * Mapserver                                   |   * Cadcorp GeognoSIS                        |           
188|   * GeoServer (Java-based WFS / WMS -server )   |   * Iwan Mapserver                           |     
189|   * SharpMap SDK - for ASP.NET 2.0              |   * MapDotNet Server                         |     
190|   * MapGuide Open Source (using FDO)            |   * MapGuide Enterprise (using FDO)          |   
191|                                                 |   * ESRI ArcGIS Server 9.3+                  |         
192| * Desktop                                       |                                              |           
193|                                                 | * Desktop                                    |               
194|   * uDig                                        |                                              |           
195|   * QGIS                                        |   * Cadcorp SIS                              |     
196|   * mezoGIS                                     |   * Microimages TNTmips GIS                  |         
197|   * OpenJUMP                                    |   * ESRI ArcGIS 9.3+                         |           
198|   * OpenEV                                      |   * Manifold                                 |   
199|   * SharpMap SDK for Microsoft.NET 2.0          |   * GeoConcept                               |       
200|   * ZigGIS for ArcGIS/ArcObjects.NET            |   * MapInfo (v10)                            |           
201|   * GvSIG                                       |   * AutoCAD Map 3D (using FDO)               |   
202|   * GRASS                                       |                                              |           
203|                                                 |                                              |             
204+-------------------------------------------------+----------------------------------------------+
205
Note: See TracBrowser for help on using the repository browser.