/******************************************************************************* NAME OBLIQUE MERCATOR (HOTINE) PURPOSE: Transforms input longitude and latitude to Easting and Northing for the Oblique Mercator projection. The longitude and latitude must be in radians. The Easting and Northing values will be returned in meters. PROGRAMMER DATE ---------- ---- T. Mittan Mar, 1993 ALGORITHM REFERENCES 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United State Government Printing Office, Washington D.C., 1987. 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", U.S. Geological Survey Professional Paper 1453 , United State Government Printing Office, Washington D.C., 1989. *******************************************************************************/ Proj4js.Proj.omerc = { /* Initialize the Oblique Mercator projection ------------------------------------------*/ init: function() { if (!this.mode) this.mode=0; if (!this.lon1) {this.lon1=0;this.mode=1;} if (!this.lon2) this.lon2=0; if (!this.lat2) this.lat2=0; /* Place parameters in static storage for common use -------------------------------------------------*/ var temp = this.b/ this.a; var es = 1.0 - Math.pow(temp,2); var e = Math.sqrt(es); this.sin_p20=Math.sin(this.lat0); this.cos_p20=Math.cos(this.lat0); this.con = 1.0 - this.es * this.sin_p20 * this.sin_p20; this.com = Math.sqrt(1.0 - es); this.bl = Math.sqrt(1.0 + this.es * Math.pow(this.cos_p20,4.0)/(1.0 - es)); this.al = this.a * this.bl * this.k0 * this.com / this.con; if (Math.abs(this.lat0) < Proj4js.common.EPSLN) { this.ts = 1.0; this.d = 1.0; this.el = 1.0; } else { this.ts = Proj4js.common.tsfnz(this.e,this.lat0,this.sin_p20); this.con = Math.sqrt(this.con); this.d = this.bl * this.com / (this.cos_p20 * this.con); if ((this.d * this.d - 1.0) > 0.0) { if (this.lat0 >= 0.0) { this.f = this.d + Math.sqrt(this.d * this.d - 1.0); } else { this.f = this.d - Math.sqrt(this.d * this.d - 1.0); } } else { this.f = this.d; } this.el = this.f * Math.pow(this.ts,this.bl); } //this.longc=52.60353916666667; if (this.mode != 0) { this.g = .5 * (this.f - 1.0/this.f); this.gama = Proj4js.common.asinz(Math.sin(this.alpha) / this.d); this.longc= this.longc - Proj4js.common.asinz(this.g * Math.tan(this.gama))/this.bl; /* Report parameters common to format B -------------------------------------*/ //genrpt(azimuth * R2D,"Azimuth of Central Line: "); //cenlon(lon_origin); // cenlat(lat_origin); this.con = Math.abs(this.lat0); if ((this.con > Proj4js.common.EPSLN) && (Math.abs(this.con - Proj4js.common.HALF_PI) > Proj4js.common.EPSLN)) { this.singam=Math.sin(this.gama); this.cosgam=Math.cos(this.gama); this.sinaz=Math.sin(this.alpha); this.cosaz=Math.cos(this.alpha); if (this.lat0>= 0) { this.u = (this.al / this.bl) * Math.atan(Math.sqrt(this.d*this.d - 1.0)/this.cosaz); } else { this.u = -(this.al / this.bl) *Math.atan(Math.sqrt(this.d*this.d - 1.0)/this.cosaz); } } else { Proj4js.reportError("omerc:Init:DataError"); } } else { this.sinphi =Math. sin(this.at1); this.ts1 = Proj4js.common.tsfnz(this.e,this.lat1,this.sinphi); this.sinphi = Math.sin(this.lat2); this.ts2 = Proj4js.common.tsfnz(this.e,this.lat2,this.sinphi); this.h = Math.pow(this.ts1,this.bl); this.l = Math.pow(this.ts2,this.bl); this.f = this.el/this.h; this.g = .5 * (this.f - 1.0/this.f); this.j = (this.el * this.el - this.l * this.h)/(this.el * this.el + this.l * this.h); this.p = (this.l - this.h) / (this.l + this.h); this.dlon = this.lon1 - this.lon2; if (this.dlon < -Proj4js.common.PI) this.lon2 = this.lon2 - 2.0 * Proj4js.common.PI; if (this.dlon > Proj4js.common.PI) this.lon2 = this.lon2 + 2.0 * Proj4js.common.PI; this.dlon = this.lon1 - this.lon2; this.longc = .5 * (this.lon1 + this.lon2) -Math.atan(this.j * Math.tan(.5 * this.bl * this.dlon)/this.p)/this.bl; this.dlon = Proj4js.common.adjust_lon(this.lon1 - this.longc); this.gama = Math.atan(Math.sin(this.bl * this.dlon)/this.g); this.alpha = Proj4js.common.asinz(this.d * Math.sin(this.gama)); /* Report parameters common to format A -------------------------------------*/ if (Math.abs(this.lat1 - this.lat2) <= Proj4js.common.EPSLN) { Proj4js.reportError("omercInitDataError"); //return(202); } else { this.con = Math.abs(this.lat1); } if ((this.con <= Proj4js.common.EPSLN) || (Math.abs(this.con - HALF_PI) <= Proj4js.common.EPSLN)) { Proj4js.reportError("omercInitDataError"); //return(202); } else { if (Math.abs(Math.abs(this.lat0) - Proj4js.common.HALF_PI) <= Proj4js.common.EPSLN) { Proj4js.reportError("omercInitDataError"); //return(202); } } this.singam=Math.sin(this.gam); this.cosgam=Math.cos(this.gam); this.sinaz=Math.sin(this.alpha); this.cosaz=Math.cos(this.alpha); if (this.lat0 >= 0) { this.u = (this.al/this.bl) * Math.atan(Math.sqrt(this.d * this.d - 1.0)/this.cosaz); } else { this.u = -(this.al/this.bl) * Math.atan(Math.sqrt(this.d * this.d - 1.0)/this.cosaz); } } }, /* Oblique Mercator forward equations--mapping lat,long to x,y ----------------------------------------------------------*/ forward: function(p) { var theta; /* angle */ var sin_phi, cos_phi;/* sin and cos value */ var b; /* temporary values */ var c, t, tq; /* temporary values */ var con, n, ml; /* cone constant, small m */ var q,us,vl; var ul,vs; var s; var dlon; var ts1; var lon=p.x; var lat=p.y; /* Forward equations -----------------*/ sin_phi = Math.sin(lat); dlon = Proj4js.common.adjust_lon(lon - this.longc); vl = Math.sin(this.bl * dlon); if (Math.abs(Math.abs(lat) - Proj4js.common.HALF_PI) > Proj4js.common.EPSLN) { ts1 = Proj4js.common.tsfnz(this.e,lat,sin_phi); q = this.el / (Math.pow(ts1,this.bl)); s = .5 * (q - 1.0 / q); t = .5 * (q + 1.0/ q); ul = (s * this.singam - vl * this.cosgam) / t; con = Math.cos(this.bl * dlon); if (Math.abs(con) < .0000001) { us = this.al * this.bl * dlon; } else { us = this.al * Math.atan((s * this.cosgam + vl * this.singam) / con)/this.bl; if (con < 0) us = us + Proj4js.common.PI * this.al / this.bl; } } else { if (lat >= 0) { ul = this.singam; } else { ul = -this.singam; } us = this.al * lat / this.bl; } if (Math.abs(Math.abs(ul) - 1.0) <= Proj4js.common.EPSLN) { //alert("Point projects into infinity","omer-for"); Proj4js.reportError("omercFwdInfinity"); //return(205); } vs = .5 * this.al * Math.log((1.0 - ul)/(1.0 + ul)) / this.bl; us = us - this.u; var x = this.x0 + vs * this.cosaz + us * this.sinaz; var y = this.y0 + us * this.cosaz - vs * this.sinaz; p.x=x; p.y=y; return p; }, inverse: function(p) { var delta_lon; /* Delta longitude (Given longitude - center */ var theta; /* angle */ var delta_theta; /* adjusted longitude */ var sin_phi, cos_phi;/* sin and cos value */ var b; /* temporary values */ var c, t, tq; /* temporary values */ var con, n, ml; /* cone constant, small m */ var vs,us,q,s,ts1; var vl,ul,bs; var dlon; var flag; /* Inverse equations -----------------*/ p.x -= this.x0; p.y -= this.y0; flag = 0; vs = p.x * this.cosaz - p.y * this.sinaz; us = p.y * this.cosaz + p.x * this.sinaz; us = us + this.u; q = Math.exp(-this.bl * vs / this.al); s = .5 * (q - 1.0/q); t = .5 * (q + 1.0/q); vl = Math.sin(this.bl * us / this.al); ul = (vl * this.cosgam + s * this.singam)/t; if (Math.abs(Math.abs(ul) - 1.0) <= Proj4js.common.EPSLN) { lon = this.longc; if (ul >= 0.0) { lat = Proj4js.common.HALF_PI; } else { lat = -Proj4js.common.HALF_PI; } } else { con = 1.0 / this.bl; ts1 =Math.pow((this.el / Math.sqrt((1.0 + ul) / (1.0 - ul))),con); lat = Proj4js.common.phi2z(this.e,ts1); //if (flag != 0) //return(flag); //~ con = Math.cos(this.bl * us /al); theta = this.longc - Math.atan2((s * this.cosgam - vl * this.singam) , con)/this.bl; lon = Proj4js.common.adjust_lon(theta); } p.x=lon; p.y=lat; return p; } };