/* Function to compute, phi4, the latitude for the inverse of the Polyconic projection. ------------------------------------------------------------*/ function phi4z (eccent,e0,e1,e2,e3,a,b,c,phi) { var sinphi, sin2ph, tanph, ml, mlp, con1, con2, con3, dphi, i; phi = a; for (i = 1; i <= 15; i++) { sinphi = Math.sin(phi); tanphi = Math.tan(phi); c = tanphi * Math.sqrt (1.0 - eccent * sinphi * sinphi); sin2ph = Math.sin (2.0 * phi); /* ml = e0 * *phi - e1 * sin2ph + e2 * sin (4.0 * *phi); mlp = e0 - 2.0 * e1 * cos (2.0 * *phi) + 4.0 * e2 * cos (4.0 * *phi); */ ml = e0 * phi - e1 * sin2ph + e2 * Math.sin (4.0 * phi) - e3 * Math.sin (6.0 * phi); mlp = e0 - 2.0 * e1 * Math.cos (2.0 * phi) + 4.0 * e2 * Math.cos (4.0 * phi) - 6.0 * e3 * Math.cos (6.0 * phi); con1 = 2.0 * ml + c * (ml * ml + b) - 2.0 * a * (c * ml + 1.0); con2 = eccent * sin2ph * (ml * ml + b - 2.0 * a * ml) / (2.0 *c); con3 = 2.0 * (a - ml) * (c * mlp - 2.0 / sin2ph) - 2.0 * mlp; dphi = con1 / (con2 + con3); phi += dphi; if (Math.abs(dphi) <= .0000000001 ) return(phi); } Proj4js.reportError("phi4z: No convergence"); return null; } /* Function to compute the constant e4 from the input of the eccentricity of the spheroid, x. This constant is used in the Polar Stereographic projection. --------------------------------------------------------------------*/ function e4fn(x) { var con, com; con = 1.0 + x; com = 1.0 - x; return (Math.sqrt((Math.pow(con,con))*(Math.pow(com,com)))); } /******************************************************************************* NAME POLYCONIC PURPOSE: Transforms input longitude and latitude to Easting and Northing for the Polyconic projection. The longitude and latitude must be in radians. The Easting and Northing values will be returned in meters. PROGRAMMER DATE ---------- ---- T. Mittan Mar, 1993 ALGORITHM REFERENCES 1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United State Government Printing Office, Washington D.C., 1987. 2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections", U.S. Geological Survey Professional Paper 1453 , United State Government Printing Office, Washington D.C., 1989. *******************************************************************************/ Proj4js.Proj.poly = { /* Initialize the POLYCONIC projection ----------------------------------*/ init: function() { var temp; /* temporary variable */ if (this.lat0=0) this.lat0=90;//this.lat0 ca /* Place parameters in static storage for common use -------------------------------------------------*/ this.temp = this.b / this.a; this.es = 1.0 - Math.pow(this.temp,2);// devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles this.e = Math.sqrt(this.es); this.e0 = Proj4js.common.e0fn(this.es); this.e1 = Proj4js.common.e1fn(this.es); this.e2 = Proj4js.common.e2fn(this.es); this.e3 = Proj4js.common.e3fn(this.es); this.ml0 = Proj4js.common.mlfn(this.e0, this.e1,this.e2, this.e3, this.lat0);//si que des zeros le calcul ne se fait pas //if (!this.ml0) {this.ml0=0;} }, /* Polyconic forward equations--mapping lat,long to x,y ---------------------------------------------------*/ forward: function(p) { var sinphi, cosphi; /* sin and cos value */ var al; /* temporary values */ var c; /* temporary values */ var con, ml; /* cone constant, small m */ var ms; /* small m */ var x,y; var lon=p.x; var lat=p.y; con = Proj4js.common.adjust_lon(lon - this.long0); if (Math.abs(lat) <= .0000001) { x = this.x0 + this.a * con; y = this.y0 - this.a * this.ml0; } else { sinphi = Math.sin(lat); cosphi = Math.cos(lat); ml = Proj4js.common.mlfn(this.e0, this.e1, this.e2, this.e3, lat); ms = Proj4js.common.msfnz(this.e,sinphi,cosphi); con = sinphi; x = this.x0 + this.a * ms * Math.sin(con)/sinphi; y = this.y0 + this.a * (ml - this.ml0 + ms * (1.0 - Math.cos(con))/sinphi); } p.x=x; p.y=y; return p; }, /* Inverse equations -----------------*/ inverse: function(p) { var sin_phi, cos_phi; /* sin and cos value */ var al; /* temporary values */ var b; /* temporary values */ var c; /* temporary values */ var con, ml; /* cone constant, small m */ var iflg; /* error flag */ var lon,lat; p.x -= this.x0; p.y -= this.y0; al = this.ml0 + p.y/this.a; iflg = 0; if (Math.abs(al) <= .0000001) { lon = p.x/this.a + this.long0; lat = 0.0; } else { b = al * al + (p.x/this.a) * (p.x/this.a); iflg = phi4z(this.es,this.e0,this.e1,this.e2,this.e3,this.al,b,c,lat); if (iflg != 1) return(iflg); lon = Proj4js.common.adjust_lon((Proj4js.common.asinz(p.x * c / this.a) / Math.sin(lat)) + this.long0); } p.x=lon; p.y=lat; return p; } };